For $n \ge 5$ There is no Nontrivial Z_2 -Measure on $L(\mathbb{R}^n)$

Mirko Navara¹ and Pavel Pták²

We prove the statement in the title. As a consequence, we note that there is no nontrivial Z_2 -measure on L(H), dim $H = \infty$.

KEY WORDS: quantum logic; projection lattice; group-valued measure.

1. INTRODUCTION

In (Foulis, 2000), D. Foulis initiates and investigates a new approach to the theoretical foundation of quantum mechanics. The approach is based on the concept of *universal group* associated with group-valued measures on a quantum logic. Naturally, a better understanding of group-valued measures has become desirable (for some previous results, see (Greechie, 1971; Navara, 1994; Ovchinnikov, 1999; Pták, 1998; Weber, 1994), etc.). For the group Z_2 (the group {0, 1} mod 2), however, the interest coming from the motivation indicated above combines with the interest in the intriguing question of "hidden variables" (see (Bell, 1966; Kochen and Specker, 1967; Mermin, 1993; Pitowsky, 1998; Svozil and Tkadlec, 1996), etc.). This fact, together with some initial observations on group-valued measures, has been communicated to us by J. Harding (Harding). Responding to this, we show that for the projection logic $L(R^n)$, where $n \ge 5$, there is no nontrivial Z_2 -valued measure (alias "there is no generalized hidden variable on $L(R^n)$, $n \ge 5$ ").

2. NOTIONS AND RESULTS

We shall use the notion of *quantum logic* $(L, \leq, ')$ in its standard meaning (see e.g., (Pták and Pulmannová, 1991)), we do not require that $(L, \leq, ')$ be σ -complete. We harmlessly abuse the notation by referring to L only.

1595

¹ Center for Machine Perception, Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic; e-mail: navara@cmp.felk. cvut.cz.

² Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University, Technická 2, 166 27 Prague 6, Czech Republic; e-mail: ptak@math.feld.cvut.cz.

The principal notion we want to study here is introduced in the following definition. (Recall that by Z_2 , we shall denote the group $\{0, 1\}$ with the "mod 2" addition.)

Definition 2.1. Let *L* be a quantum logic. A mapping s: $L \rightarrow Z_2$ is said to be a Z_2 -measure if s(0) = 0 and $s(a \lor b) = s(a) + s(b)$ whenever $a \le b'$.

In this note, we take up the fundamental case of L being the projection logic $L(\mathbb{R}^n)$ of $\mathbb{R}^n (n \in N)$. Obviously, $L(\mathbb{R}^n)$ always possesses Z_2 -measures – it suffices to set s(a) = 0 for each atom a of $L(\mathbb{R}^n)$. Also, if we set s(a) = 1 for each atom, we obtain a Z_2 -measure on $L(\mathbb{R}^n)$, too. The situation becomes more interesting if we exclude these trivial cases. Let us say that a Z_2 -measure s is *nontrivial* if there are atoms $a, b \in L(\mathbb{R}^n)$ with s(a) = 0 and s(b) = 1. Clearly, $L(\mathbb{R}^1)$ is too primitive to be checked and $L(\mathbb{R}^2)$ possesses nontrivial measures. The case of $L(\mathbb{R}^3)$ seems entirely open. (Obviously, beginning with n = 3, there is no standard two-valued measure on $L(\mathbb{R}^n)$, see e.g., (Kochen and Specker, 1967).) For $L(\mathbb{R}^4)$, we have a partial result (Theorem 2) which suggests that there is no nontrivial Z_2 -measure on $L(\mathbb{R}^4)$. For $L(\mathbb{R}^n), n \ge 5$, we show (Theorem 3) that there is no nontrivial Z_2 -measure on this logic.

Theorem 2.1. There is no nontrivial Z_2 -measure, s, on $L(R^4)$ which satisfies s(1) = 1 (here 1 in the parentheses obviously means the identity projection on R^4).

Proof: Take an orthogonal basis $B = \{e_1, e_2, e_3, e_4\}$ of R^4 . For typographical reasons, let us adopt the convention that $\overline{1}$ denotes -1. Consider the collection of 36 vectors expressed in Table I in terms of their coordinates with respect to *B*. Observe that each column represents an orthogonal basis of R^4 and that each vector *occurs twice* in the collection. (This collection is a modification of that dealt with in (Peres, 1995).) Suppose that $s: L(R^n) \rightarrow Z_2$ is a nontrivial measure with s(1) = 1. Then if we restrict *s* to the one-dimensional subspaces generated by vectors belonging to a given column, we immediately see that the value 1 occurs either one or three times. Since we have nine columns, the total sum (mod 2) of all values the Z_2 -measure *s* attained on all subspaces (vectors) of the collection is 1. But each vector occurs twice. This implies that the total sum must be 0 - a contradiction.

Table I.	Nine orthogonal bases of R^4	
----------	--------------------------------	--

1000	1000	0100	1111	1111	1111	1111	1111	1111
0100	0010	0010	1111	1111	1111	1111	1111	1111
0011	0101	1001	1100	1010	1100	1001	1010	$100\overline{1}$
0011	0101	$100\bar{1}$	$001\overline{1}$	0101	0011	0110	0101	0110

Theorem 2.2. If $n \ge 5$, then there is no nontrivial Z_2 -measure on $L(\mathbb{R}^n)$.

Proof: We provide the proof for n = 5 – the general case follows easily. Let *s*: $L(R^5) \rightarrow Z_2$ be a nontrivial Z_2 -measure. Then there is an atom, $a \in L(R^5)$, such that $s(a) \neq s(1)$. It follows that $s(a^{\perp}) = 1$. But a^{\perp} is a four-dimensional space and we could easily be able to construct a nontrivial Z_2 -measure, *t*, on $L(R^4)$ with t(1) = 1. But this cannot be done in view of Theorem 2. The proof is complete (the extension to $L(R^n)$, n > 5, is straightforward).

Observe that since $L(R^5)$ can be viewed as a quantum sublogic of L(H) for an infinite-dimensional Hilbert space H (see e.g., (Hamhalter and Pták, 1992)), the result continues to hold true for the logics L(H), dim $H = \infty$.

ACKNOWLEDGMENT

This research was supported by the Czech Ministry of Education under Research Programme MSM 212300013 "Decision Making and Control in Manufacturing" and grant 201/00/0331 of the Grant Agency of the Czech Republic. The authors thank David Buhagiar for a correction of the proof of Theorem 3.

REFERENCES

- Bell, J. S. (1966). On the problem of hidden variables in quantum theory. *Review of Modern Physics* 38, 447–452.
- Greechie, R. J. (1971). Orthomodular lattices admitting no states. *Journal of Combinotorial Theory* **10**, 119–132.
- Gudder, S. P. (1988). Quantum Probability, Academic Press, New York.
- Foulis, D. (2000). Representations on unigroups. In Current Research in Operational Quantum Logic: Algebras, Categories and Languages, B. Coecke, D. Moore, and A. Wilce eds., Kluwer, Dordrecht.
- Hamhalter, J. and Pták, P. (1992). Hilbert-space valued states on quantum logics. *Applications Mat.* 37, 51–61.
- Harding, J.: Notes on group-valued measures on L(H).
- Kochen, S. and Specker, E. P. (1967). The problem of hidden variables in quantum mechanics. *Journal of Mathematical Mechanics* 17, 59–87.
- Mermin, N. D. (1993). Hidden variables and the two theorems of John Bell. *Review of Modern Physics* 65, 803–815.
- Navara, M. (1994). An orthomodular lattice admitting no group-valued measure. Proceedings of American Mathematical Society 122, 7–12.
- Ovchinnikov, P. G. (1999). Measures on finite concrete logics. Proceedings of American Mathematical Society 127(7), 1957–1966.
- Peres, A. (1995). Quantum Theory: Concepts and Methods, Kluwer, Dordrecht.
- Pitowsky, I. (1998). Infinite and finite Gleason's theorems and the logic of indeterminacy. *Journal of Mathematical Physics* **39**, 218–228.
- Pták, P. (1998). Some nearly Boolean orthomodular posets. Proceedings of American Mathematical Society 126(7), 2039–2046.

- Pták, P. and Pulmannová, S. (1991). Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht/Boston/London.
- Svozil, K. and Tkadlec, J. (1996). Measures and the Kochen–Specker theorem. Journal of Mathematical Physics 37, 5380–5401.
- Weber, H. (1994). There are orthomodular lattices without non-trivial group valued states; a computerbased construction. *Journal of Mathematical Analysis and Applications* 183, 89–94.